On the use of the Discrete Element Method in the modelling of masonry structures under seismic loads

– October 2013 –

Marine Bagnéris¹, Frédéric Dubois², Paul Taforel²

¹ École Nationale Supérieure d'Architecture de Marseille, ² Laboratoire de Mécanique et Génie Civil
1- General Introduction

2- Seismic Vulnerability

3- « MP » - pre processing

4- Simulation Results

5- « MP » - post processing

6- Perspectives & conclusions
General Introduction

Seismic Vulnerability
Simulation Results
Outlook & Conclusions

« MP » pre processing
« MP » post processing

1-

General Introduction

Workshop Masonry LMA – October, 24th 2013
very heterogeneous material with numerous non linearity

- Dry masonry / mortar
- Material properties (blocks/bonding agent)
- Shape & dimensions of blocks
- Blocs layout

→ Modelling ?
General Introduction

- **Seismic Vulnerability**
- **Simulation Results**
- **Outlook & Conclusions**

Structured Choice and Scale of the Analysis

Equivalent Frame Model*

Finite Element Model*

Discrete Model

Structural elements

- **Panels**

Continuous media

- **Homogeneity**
 - equivalent material

Divided media

- Model of « block to block »

- **Description « masses / springs »**
 - Bulk behaviour of blocks + interaction laws
 - good In-plane & out-of-plane responses

Discretisation

- **Macro elements**
 - No Out-of-plane response

Damage

- In each macro element

Fields

- on the mesh

Localisation issues

- Principal inelastic strains

Fileds

Mechanical information

at the scale of the block / contact point

Workshop Masonry LMA – October, 24th 2013
1. Generation of discrete models of masonry structures

2. Numerical simulation using DEM (LMGC90)

3. Exploitation of simulation results

Seismic Vulnerability
Seismic Vulnerability
Specific pattern of failure due to seismic actions:

- **In-plane:**
 - Shear → diagonal cracks in panels
 - Compression / Flexion → horizontal cracks in the top/bottom of the panels

- **Out-of-plane:**
 → falling down of masonry panels

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B1</th>
<th>B2</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>VERTICAL OVERTURNING</td>
<td>OVERTURNING WITH 1 SIDE WING</td>
<td>OVERTURNING WITH 2 SIDE WINGS</td>
<td>CORNER FAILURE</td>
<td>PARTIAL OVERTURNING</td>
<td>VERTICAL STRIP OVERTURNING</td>
<td>VERTICAL ARCH</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FURTHER PARTIAL FAILURES

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>HORIZONTAL ARCH</td>
<td>IN-PLANE FAILURE</td>
<td>VERTICAL ADDITION</td>
<td>GABLE OVERTURNING</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ASSOCIATED FAILURES

<table>
<thead>
<tr>
<th></th>
<th>G</th>
<th>H</th>
<th>I</th>
<th>L</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ROOF/FLOORS COLLAPSE</td>
<td>MASONRY FAILURE</td>
<td>Insufficient cohesion in the fabric</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Niveaux de dommage des bâtiments en maçonnerie d'après l'EMS98

d'après D. D'Ayala & E. Speranza, Earthquake Spectra, 2003
Post seismic missions

Seismic Vulnerability
Simulation Results
Outlook & Conclusions

General Introduction
« MP » pre processing
« MP » post processing

Workshop Masonry LMA – October, 24th 2013
Mechanical Approach

Quasi-static

Dynamic

Direct Analysis of the damage state

Agression vs Damage grade

Seismic Vulnerability
Simulation Results
Outlook & Conclusions

General Introduction
« MP » pre processing
« MP » post processing

Workshop Masonry LMA – October, 24th 2013
Numerical Approach of the vulnerability with the NSCD method and LMGC90

General Introduction
Outlook & Conclusions

« MP » pre processing
« MP » post processing

Discrete models

Generation of discrete models
Pre processing

Numerical simulation with LMGC90 Calculator

Post Treatment Vulnerability framework
Post processing

Buildings to study

Response curves → statistic treatment of the vulnerability

Discrete models

LMGC90

Damage evaluation of masonry structures
General Introduction
« MP » pre processing
« MP » post processing

Seismic Vulnerability
Simulation Results
Outlook & Conclusions

3-

« Maison Paramétrée » Tool – pre processing –
A structural approach of masonry structures

General Introduction
« MP » pre processing
« MP » post processing

Simulation Results
Outlook & Conclusions

Seismic Vulnerability

Workshop Masonry LMA – October, 24th 2013
Beyond preprocessing...

Gestion of the visualisation & identification interest zones
Deformable macro-elements
(generation with GMSH « on-the-fly »)

Rigid macro-elements
(clusters of rigid blocks)

Beyond preprocessing...
Simulation Results

4-
Mechanical Analysis

BM1

BM3

BM4

Seismic Vulnerability
Simulation Results
Outlook & Conclusions

- General Introduction
- « MP » pre processing
- « MP » post processing

Workshop Masonry LMA – October, 24th 2013
Conclusion

- Variability
 - Enrichment of the parametric space → gestion of irregularities

- Modelling and Behaviour
 - Under estimation of shear behaviours
 - Over estimation of the stability of masonry structures
 - Improvement of the modelling of structural elements: diaphragms, ...

Vulnerability Analysis ?

Modelling masonry with deformable blocks
Local approach by panels inspired by GNDT and adapted to the DEM

Existence et quantification of damage in each vertical element of structure:

→ ∃ 1 carck if \(\delta_{2 \text{ blocs}} > 0.5 \text{ mm} \)
→ Cracks rate = Nb crackss / Nb interfaces
→ mean cracks \(\delta_{\text{mean}} \) ? Cumulated carcks ?
Panels Behaviour

- In-plane « deformation »
- Out-of-plane behaviour

Structural behaviour

Horizontal Diaphragms

- Interstorey drift
- Torsion

Seismic Vulnerability

Vulnerability Analysis & Damage grade identification

Workshop Masonry LMA – October, 24th 2013
Conclusion

- Local **indicators** + full proposed **strategy**

Layout...

- Indicators have to be improved (**suitability ?**)

- **Utilisation of the relevant indicators**
 → from **local indicators to global indicators**

- Generation of **vulnerability curves** linking probability of damage and the characteristics of seismic loads

- Study of a set of real buildings: **comparison** of vulnerability curves numerically obtained with DEM with empirical ones
- Geometrical models « block to block »
 - masonries with regular layers
 - multi layers masonries
 - ...

- Heterogeneity of blocks / mortar
 - bulk behaviour
 - interaction laws
 - ...

Masonry with regular layers composed of non uniform blocks

Mesures in situ (frequential response)

Parametric Space

- variability of the structures
- + variability + gestion of initial state

Probability density function
Thank you for your attention