First French-Italian meeting on masonry
Laboratoire de Mécanique et d’Acoustique
Marseille, October 24-25, 2013

Mechanics of Masonry Structures:
Micro, Multiscale and Macro Models

Elio Sacco
Department of Civil & Mechanical Engineering
University of Cassino & S.L. - Italy
in collaboration with Daniela Addessi, Giulio Alfano,
Sonia Marfia, Raimondo Luciano and Jessica Toti
Outline of the talk

1. MOTIVATIONS

2. MODELS FOR MASONRY
 • micromechanical models
 • phenomenological macro models
 • multiscale models

3. CONCLUSIONS
MOTIVATIONS
• Europe (and not only) is rich of historical buildings, monumental structures and heritage sites.

• The monumental heritage represents the history and the culture of the Country; it must be saved and preserved and (when necessary consolidated).

• Most of the heritage constructions are in masonry.
map of the seismic risk in Italy
IRPINIA

1980

via palladino
palazzo nisivoccia
basilica interno
Umbria-Marche 1997

Foligno: Piazza della Repubblica

October 14, 1997 05:23 pm
bell tower of the Town Hall.
What is the masonry material?

Masonry: heterogeneous material

mixture of (at least) two materials

natural stones, bricks

+ lime or cement based mortar

dry masonry
MODELS FOR MASONRY
Masonry modeling

Micro-mechanics

Phenomenological model

Homogenization

Discrete model

Continuum model

Macro-elements
Micromechanical models
Micromechanical models

- different **constitutive laws** for units and the mortar;
- structural analysis performed **considering each constituent** of the masonry material;
- mortar joints modeled as **interfaces** and bricks characterized by a linear or nonlinear response;
- structural analyses characterized by **great computational effort**; FEM: unit blocks and the mortar beds discretized, high number of nodal unknowns.

Lofti and Shing, 1994; Giambanco and Di Gati, 1997; Gambarotta and Lagomarsino, 1997; Lourenço and Rots, 1997; Giambanco et al., 2001; Oliveira and Lourenço, 2004; Alfano and Sacco, 2006; Fouchal et al. 2009;

Elio Sacco – DICeM, unicas
Analysis of masonry arch

Geometry:
• $R_b = 516$ mm
• $h = 12$ mm $b = 5.5$ mm

Mechanical properties:
• $E = 8300$ N/mm2
• $G = 3400$ N/mm2
four hinges mechanism
Numerical simulation
• Brick/mortar:
 ➢ linear elastic / elastoplastic

• Brick-mortar interface: cohesive model
 ➢ damage,
 ➢ unilateral contact,
 ➢ friction
Cohesive-zone model

Microscale (REV)

Representative Elementary Volume
Main idea for coupling interface damage and friction

- On the undamaged part: elastic interface law
- On the damaged part: unilateral-friction law

\[\sigma = (1 - D) \sigma^u + D \sigma^d \]

\[\sigma^u = K s \]
\[\sigma^d = K \left[s - (c + p) \right] \]

\[D \in [0, 1] : \text{damage parameter} \]

- Kinematic compatibility: \(s^u = s^d = s \)

- Additive decomposition of \(s^d \): \(s^d = s^{de} + s^{di} \)

Elio Sacco – DICeM, unicas

unilateral contact vector

\[c = h(s_N) \begin{cases} s_N \\ 0 \end{cases} \quad h(s_N) = 1 \text{ if } s_N \geq 0 \\
= 0 \text{ if } s_N < 0 \]

inelastic slip: classical Coulomb yield function

\[\phi(\tau^d) = \mu \langle \sigma_N^d \rangle - |\tau_T^d| = \mu \tau_N^d + |\tau_T^d| \]

\[\dot{p}_T = \dot{\lambda} \frac{d\phi}{d\tau_T^d} = \dot{\lambda} \frac{\tau_T^d}{|\tau_T^d|} \]

\[\dot{\lambda} \geq 0, \quad \phi(\sigma^d) \leq 0, \quad \dot{\lambda} \phi(\sigma^d) = 0 \]

damage

\[\text{Area} = G_{cl} \]

ratios

\[\eta_N = \frac{s_N^0}{s_N^f} = \frac{s_N^0 \tau_N^0}{2G_{cn}} \\
\eta_T = \frac{s_T^0}{s_T^f} = \frac{s_T^0 \tau_T^0}{2G_{ct}} \]

\[\alpha = \sqrt{\langle s_N \rangle^2 + \langle s_T \rangle^2} \]

\[\eta = 1 - \frac{1}{\alpha^2} \left(\langle s_N \rangle^2 \eta_N + s_T^2 \eta_T \right) \]

damage evolution

\[D = \max_{\text{history}} \left\{ \min \{1, \tilde{D}\} \right\} \]

Elio Sacco – DICeM, unicas
Problem: assigned a history of average strain \[\mathbf{E} = 1/h \{ s_T, s_N \}^T \]
evaluate the average stress state \[\Sigma = 1/V \int_V \{ \sigma_{NT}, \sigma_N \}^T dV \]
accounting for the crack growth, the unilateral contact and the friction

Linear elastic **constitutive laws** for the mortar and brick

\[\sigma^m = C^m \varepsilon^m, \quad \sigma^b = C^b \varepsilon^b \]

Unilateral contact

\[d_N \geq 0, \quad \sigma \leq 0, \quad d_N \sigma = 0 \]

Friction

\[\phi(\tau, \sigma) = \mu \langle \sigma \rangle - |\tau| = \mu \sigma + |\tau| \]

\[\dot{\mathbf{p}} = \dot{\lambda} \begin{bmatrix} d\phi \\ d\tau \\ 0 \end{bmatrix} = \dot{\lambda} \begin{bmatrix} \tau \\ 0 \end{bmatrix} \]

\[\dot{\lambda} \geq 0, \quad \phi(\tau, \sigma) \leq 0, \quad \dot{\lambda} \phi(\tau, \sigma) = 0 \]

Crack growth: damage evolution

Based on the relative displacement \(d_{NT}, d_N \) Fracture Mech

\(\tau, \sigma \) relative displs & stresses at the crack mouths

Elio Sacco – DICeM, unicas
Three subproblems

p1) RVE subjected to s, i.e. to E; relative displacement at the crack d^e.

p2) relative displacement prescribed at the crack mouths $d^c = -d^e$.

p3) RVE subjected to a frictional sliding at the crack mouths $p = \begin{pmatrix} p_T \\ 0 \end{pmatrix}$.
By simple superposition of the three solutions, it is possible to recover any possible mechanical situation.

<table>
<thead>
<tr>
<th>Open crack</th>
<th>Closed crack with no-sliding s1+s2</th>
<th>Closed crack with sliding s1+s2+s3</th>
</tr>
</thead>
<tbody>
<tr>
<td>s1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solution</td>
<td>s1</td>
<td>s2</td>
</tr>
<tr>
<td>Average strain, E</td>
<td>E^e</td>
<td>0</td>
</tr>
<tr>
<td>Average stress, Σ</td>
<td>Σ^e</td>
<td>Σ^c</td>
</tr>
<tr>
<td>Stresses at the crack, $\tau \sigma$</td>
<td>0</td>
<td>$\tau^c \sigma^c$</td>
</tr>
<tr>
<td>Relative displacement at crack, d</td>
<td>d^e</td>
<td>$d^e = -d^e$</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Mechanical response

Elio Sacco – DICeM, unicas
Limit load, experimental results and numerical results

Loading:

initial compression obtained by prescribing the vertical displacement of the top (vertical reactions 30KN);

vertical displacements kept constant during the analysis;

horizontal displacement of the top-right corner incremented left-ward.

Each half brick discretized with 2×2 4-noded, plane stress elements with enhanced strains.

Interface elements placed on the brick/mortar and on the brick/brick interfaces, to simulate the possible failure of a brick.

Numerically computed horizontal reaction F plotted vs prescribed horizontal displacement; comparison with the experimental data provided by Lourenco.
Crack path
Phenomenological models
Macromechanical models

• phenomenological constitutive laws for the masonry, derived performing tests on masonry, **without distinguishing the blocks and the mortar** behavior;

• **unable to describe** in detail some **micro-mechanisms** occurring in the damage evolution of masonry;

• very **effective** from a **computational** point of view for the structural analyses.

• **NO-TENSION MODEL**

 Heyman, 1966; Zienkiewicz et al., 1968; Di Pasquale, 1978; Romano and Romano, 1979; Baratta, 1982; Como and Grimaldi, 1982; Romano and Sacco, 1983; Giaquinta and Giusti, 1988; Del Piero, 1989; Sacco, 1990; Angelillo, 1993; Lucchesi et al. 1994; Luciano and Sacco, 1994; Alfano et al., 2000; Cuomo and Ventura, 2000; Marfia and Sacco, 2005; ….
Damage-plastic (nonlocal) model

- stress-strain relation
 \[\sigma = (1 - D)^2 C \varepsilon^e \]
 \[= (1 - D)^2 C (\varepsilon - \varepsilon^P) \]

- isotropic damage,
- uncoupled damage and plastic evolutions,
- Drucker-Prager plasticity with isotropic hardening.

softening \[\rightarrow\] strain and damage localization \[\times\] strong mesh dependency

nonlocal constitutive law

• damage limit function:

\[F_{nl} = \left(\frac{Y_t}{Y_{0t}} + \frac{Y_c}{Y_{0c}} - 1 \right) - \left\{ (\alpha_t \alpha_t + \alpha_c \alpha_c) \left(\frac{Y_t}{Y_{0t}} + \frac{Y_c}{Y_{0c}} \right) + \left(\alpha_t \frac{K_t}{Y_{0t}} + \alpha_c \frac{K_c}{Y_{0c}} \right) \right\} D + h \left(\frac{\alpha_t}{Y_{0t}} + \frac{\alpha_c}{Y_{0c}} \right) \nabla^2 D \]

- \(Y_t \) eq. strain tension: elastic strain
- \(Y_c \) eq. strain compression: total strain

Elio Sacco – DICeM, unicas
• damage evolution

\[\dot{F} \dot{\bar{D}} = 0 \]
\[\dot{\bar{D}} \geq 0 \quad F \leq 0 \quad F \dot{\bar{D}} = 0 \]

Consistency
Kuhn-Tucker

\[\frac{\partial F}{\partial \bar{D}} \dot{\bar{D}} + \frac{\partial F}{\partial \bar{Y}} \dot{\bar{Y}} + \frac{\partial F}{\partial \nabla^2 \bar{D}} \nabla^2 \dot{\bar{D}} = 0 \]

nonlocal term

with \[\dot{\bar{D}} > 0 \]

partial differential equation
• plasticity limit function (Drucker-Prager):
 \[F_P(\tilde{\sigma}, q) = 3J_2 + (\sigma_c - \sigma_t) I_1 - \sigma_c \sigma_t + q \]

• \(\tilde{\sigma} = \frac{\sigma}{(1 - D)^2} \) effective stress

• \(q = -\chi \alpha \) isotropic hardening force

• \(s_t, s_c \) compressive and tensile strengths

• \(I_1, J_2 \) 1st stress, 2nd deviatoric invariants
- Masonry walls

Mesh independence (wall1) and Structural response graphs are shown.
damage distribution

minimum principal stress distribution

Elio Sacco – DICeM, unicas
No-tension model

- Masonry material characterized by very low tensile strength with respect to the compression strength.

- **Assumptions:**
 - the tensile strength is zero,
 - indefinitely elastic in compression.

- **Consequences:**
 - convex strain energy function,
 - reversible constitutive law,
 - no-energy dissipation (unrealistic?),
 - uniqueness of solution stress
 - no-uniqueness of solution displacement
 - apparent simplicity,
 - not trivial numerical treatment.
No-tension model with limited compressive strength

- Kinematics
 \[\varepsilon = \varepsilon + \kappa + p \]

- Stress-stress relation (isotropic)
 \[\sigma = E \varepsilon \]

- Convex cone \(K \) of the admissible stresses:
 \[K = \{ \sigma : \sigma_1 \leq 0, \sigma_2 \leq 0 \} \]
Fracture & plasticity for the Drucker-Prager type yield plastic locus
Elio Sacco – DICeM, unicas
Unreinforced structure (right)
Unreinforced structure (left)
Reinforced structure (left)
Behavior of the structure

Multiplier of the horizontal loading vs. Horizontal displacement of P (mm)

- reinforced
- unreinforced

Elio Sacco – DICeM, unicas
The no-tension elasto-plastic model allows to catch the main features of the mechanical response of the masonry.
Multiscale models
Multiscale models

- different constitutive laws for the units and the mortar joints; homogenization procedure;
- very appealing, rational way to get the stress-strain relationship of the masonry, accounting for the failure micro-mechanisms of the masonry;
- effective models, with reduced computational effort;
- nonlinear homogenization procedure required to recover a macro-model could induce some theoretical or computational difficulties.

Kralj et al., 1991; Pietruszczak and Niu, 1992; Gambarotta and Lagomarsino, 1997; Luciano and Sacco, 1997; Cecchi and Sab, 2002; Cecchi et al. 2005; Uva and Salerno, 2006; Milani et al., 2006; Massart et al, 2007; Sacco, 2009;
Santa Emerenziana Church, built in 1940-42 designed by architect Tullio Rossi
Motivations: micro-macro analysis

Main idea: to develop a procedure which avoids the nonlinear FE2 (FEA at each iteration in each Gauss point of each element)

Simple damage model:

- the cracks occur only in the mortar material which behaves in a perfect elastic-brittle manner,
- the bricks are indefinitely elastic,
- the mortar thickness is small, so that the cracks can develop only vertically or horizontally,
- when a fracture starts to develop, a full failure of a mortar junction is supposed.
Possible damaged states of the masonry

<table>
<thead>
<tr>
<th>Paths</th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>S1 S2</td>
<td>S3 S8</td>
<td>S1 S2</td>
<td>S4 S8</td>
<td>S1 S5</td>
</tr>
<tr>
<td>S1 S5</td>
<td>S3 S8</td>
<td>S1 S5</td>
<td>S6 S8</td>
<td>S1 S7</td>
</tr>
<tr>
<td>S1 S7</td>
<td>S4 S8</td>
<td>S1 S7</td>
<td>S6 S8</td>
<td>S1 S7</td>
</tr>
<tr>
<td>S1 S7</td>
<td>S6 S8</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S1 | S2 | S3 | S4 | S5 |
S3 | S4 | | | |
S5 | S6 | S7 | | |
S7 | | | S8 | |
Homogenization

- UC problem solved for each possible state
- averages of the local stresses evaluated in the UC
- averages of the local stresses evaluated in each mortar joint
- failure of the mortar joint evaluated using the Coulomb friction criterion

\[
\begin{align*}
 c_n - \sigma_n &> 0 & c_n & \quad n - \text{cohesion} \\
 |\tau| &< c_t - \mu \sigma_n & c_t & \quad t - \text{cohesion} \\
 \mu & \quad \text{friction}
\end{align*}
\]

Solved via finite element method
Structural computation for different values of the cohesion for $\mu=1$
New approach

- first order homogenization technique, Cauchy continuum at macro- and micro-scale
- disadvantages of the first order models:
 - absolute size of the microstructure not incorporated,
 - intrinsic assumption of uniformity of the macroscopic fields (not appropriate in critical regions characterized by high deformation gradients),
 - mesh-dependency with softening.

- **enhanced continua** → **Cosserat model for masonry**

- **Cosserat continuum at the macro-scale,**
 Cauchy continuum at the micro-scale.

Kouznetsova et al. (2004); Forest and Sab (1998); van der Sluis et al. (1999); Masiani, Rizzi and Trovalusci (1995); Masiani and Trovalusci (1996, 2003); Casolo (2006); Brasile et al. (2007); De Bellis et al. (2008); Bacigalupo, Gambarotta (2010), Addessi et al. (2010).

Macro-level BVP

Displacement vector

\[U = \begin{bmatrix} U_1 & U_2 & \Phi \end{bmatrix}^T \]

Strain vector

\[E = \begin{bmatrix} E_1 & E_2 & \Gamma_{12} & \Theta & K_1 & K_2 \end{bmatrix}^T \]

Stress vector

\[\Sigma = \begin{bmatrix} \Sigma_1 & \Sigma_2 & \Sigma_{12} & Z & M_1 & M_2 \end{bmatrix}^T \]

Governing equations

\[\begin{aligned}
E &= DU
\quad \text{in } \Omega \\
D^T \Sigma + B &= 0
\quad \text{in } \Omega \\
U &= \bar{U}
\quad \text{on } \partial \Omega_U \\
N \Sigma &= T
\quad \text{on } \partial \Omega_T
\end{aligned} \]
Micro-level BVP

Displacement vector
\[\mathbf{u} = \{u_1, u_2\}^T \]

Strain vector
\[\mathbf{\varepsilon} = \{\varepsilon_1, \varepsilon_2, \gamma_{12}\}^T \]

Stress vector
\[\mathbf{\sigma} = \{\sigma_1, \sigma_2, \tau_{12}\}^T \]

Governing equations
\[
\begin{align*}
\mathbf{\varepsilon} &= \mathbf{d} \mathbf{u} \\
\mathbf{d}^T \mathbf{\sigma} &= 0 \\
\mathbf{\sigma}^i &= \mathbf{F}^i (\mathbf{\varepsilon}) \\
& \text{in } \omega \\
& i = \text{mortar / brick}
\end{align*}
\]
Micro-Macro link

Displacement vector

\[u = \tilde{u}(x) + \hat{u}(x) \]

Kinematical map

\[\tilde{u} = A(x) \, E \]

Periodicity conditions

\[\tilde{u} \text{ periodic on } \partial \omega \]
\[n \sigma \text{ anti-periodic on } \partial \omega \]
Constitutive laws

brick model: linear elastic

mortar joint model: plasticity-damage-friction

\[\sigma^M = C^M (\varepsilon - \pi) \]

\[\pi = \begin{bmatrix} \pi_T \\ \pi_N \\ \pi_{NT} \end{bmatrix} = \begin{bmatrix} 0 \\ p_N \\ 0 \end{bmatrix} + D \begin{bmatrix} h(\varepsilon_N - p_N)\varepsilon_T \\ h(\varepsilon_N - p_N)(\varepsilon_N - p_N) \\ \gamma_{NT}^p \end{bmatrix} \]

crushing damage friction sliding (exponential law)
TFA: Transformation Field Analysis

Composite material

- Nonlinear effect in a region
- Constant inelastic strain in the region (Dvorak, 1992)
- Piecewise constant inelastic strain in the region (Chaboche, 2000)
- Non-uniform TFA (Michel-Suquet, 2003)
- TFA for damage / unilateral contact / friction (Sacco, 2009)
- Non-uniform TFA (Sepe-Marfia-Sacco, 2013)
Homogenization procedure (TFA)

8 sub-domains, where inelastic effects occur

Assumptions:
1. the inelastic strain \mathbf{p} in each subset is uniform
2. the nonlinear behavior of the mortar is governed by the average stress in the subset
Unit cell subjected to average elastic and to inelastic strains

elastic strain E_e

localization of the strain $e(x) = R_e(x)E_e$

elastic strain in M^j $e^{M^j} = R_e^{M^j}E_e$

average strain E_e

average stress (Hill-Mandel principle)

$$E_e^T \Sigma_e = \frac{1}{\Omega} \int_{\Omega} e^T \sigma \, d\Omega = \frac{1}{\Omega} E_e^T \left[\int_B R_e^T C^B R_e \, d\Omega + \sum_{j=1}^{8} \int_{M^j} R_e^T C^{M^j} R_e \, d\Omega \right] E_e$$

$$= E_e^T C E_e \quad \Rightarrow \quad \Sigma_e = C E_e$$

overall elastic matrix
Unit cell subjected to average elastic and to inelastic strains

Inelastic strain \(\pi^i \)

Localization of the strain

\[p^i(x) = R_{\pi^i}(x) \pi^i \]

Elastic strain in \(M^j \)

\[\eta^i_{M^j} = \left(R_{\pi^i}^{M^j} - \delta_{ij} I \right) \pi^i \]

Average strain

\[P^i = 0 \]

Average stress

\[
\Sigma_{\pi^i} = \frac{1}{\Omega} \left[\int_{B} \left(R_{\pi^i}^{B} \right)^T C^{B} R_{\pi^i}^{B} \, d\Omega + \sum_{j=1}^{8} \int_{M^j} \left(R_{\pi^i}^{M^j} \right)^T C^{M^j} \left(R_{\pi^i}^{M^j} - \delta_{ij} I \right) \, d\Omega \right] \pi^i = S^i \pi^i
\]
Strain field localization

\[E_e \quad \pi^i \]
\[e(x) = R_e(x)E_e \quad p^i(x) = R_{\pi^i}(x)\pi^i \]

\text{average stress} \quad \Sigma_e = CE_e \quad \Sigma_{\pi^i} = S^i\pi^i \quad \text{total stress} \quad \Sigma = CE_e + \sum_{j=1}^{8} S^i\pi^i
\text{average strain} \quad E_e \quad 0 \quad \text{total strain} \quad E = E_e

Overall stress-strain relationship

\[\Sigma = C(E - P) \quad P = -\sum_{j=1}^{8} C^{-1}S^i\pi^i \]

overall inelastic strain

Elio Sacco – DICeM, unicas
masonry wall loaded in compression and shear studied by Lourenço
• Homogenization:
 – Macro-Cosserat / Micro-Cauchy
 – Damage-friction cohesive model for the mortar
 – TFA technique
 – FEM for periodic masonry arrangements

• Cosserat components strongly affect the nonlinear behavior by influencing the damage initiation and evolution and the friction plastic flow

• Relevance of the use of the micro-polar Cosserat continuum for developing accurate models for masonry.
enhanced TFA
in elastic strain
\[\pi^i = \sum_{k=1}^{h} \pi_k \phi_k^i(x) \]
\[= \pi_0 + x_1 \pi_1 + x_2 \pi_2 + x_1 x_2 \pi_3 \]
CONCLUSIONS
Micro-mechanics

Discrete model
Masonry modeling

- Micro-mechanics
- Phenomenological model
 - Homogenization
 - Discrete model
 - Continuum model
 - Macro-elements
Thanks for your attention