Robust waveform design for MIMO radars

Emanuele Grossi, Member, IEEE, Marco Lops, Senior Member, IEEE and Luca Venturino, Member, IEEE

Abstract

The problem of robust waveform design for multiple-input, multiple-output radars equipped with widely-spaced antennas is addressed here. Robust design is needed as a number of parameters may be unknown, e.g., the target scattering covariance matrix and the disturbance covariance matrix. Following a min-max approach, the code-matrix is designed to minimize the worst-case cost over all possible target (or target and disturbance) covariance matrices. The same min-max solution applies to many commonly adopted performance measures, such as the average signal-to-disturbance ratio, the linear minimum mean square error in estimating the target response, the mutual information between the received signal echoes and the target response, and the approximation of the detection probability in the high- and low-signal regimes for a fixed probability of false alarm. Examples illustrating the behavior of the min-max codes are provided.

Index Terms

MIMO radar, robust waveform design, min-max, minimax, mutual information, Chernoff’s bound, linear minimum mean square error.

I. INTRODUCTION

Consider the $M \times L$ multiple-input multiple-output (MIMO) radar architecture of Figure 1, and assume that a target – with extension V and V' in the transmit and receive sensor alignment direction, respectively – is present, d and d' being the sensor spacing at the transmitter and receiver. Assume that the time delays

E. Grossi and L. Venturino are with the DAEIMI, Università degli Studi di Cassino, Italy 03043. E-mail: e.grossi@unicas.it, l.venturino@unicas.it.

M. Lops is with the DAEIMI, Università degli Studi di Cassino, Cassino (FR), Italy 03043, and with the ENSEEIHT, National Polytechnic Institute of Toulouse, France 31071. E-mail: lops@unicas.it.

A preliminary version of the paper was presented at the IEEE International Symposium on Information Theory, Austin, TX, USA, June 2010.
of the different paths between each transmit antenna and the target are not resolvable, which in turn implies that the bandwidth of the transmitted waveforms is smaller than $c(M-1)d$, c denoting the speed of light. Moreover, assume that the Doppler spread across the different transmit-receive pairs is either negligible or known. Denoting λ the carrier wavelength, the scattering towards receive element ℓ can be modeled through a beam of angular width λ/V', and the arc illuminated at distance R'_ℓ has length $\lambda R'_\ell/V'$: as a consequence, uncorrelated scattering towards different sensors occurs whenever the spacing d' satisfies the condition $\lambda R'_\ell/V' < d'$, for $\ell = 1, \ldots, L$. Similarly at the transmitter side the uncorrelated scattering condition translates to $\lambda R_m/V < d$, $m = 1, \ldots, M$. Notice that the above scheme allows accounting for transmit and receive diversity separately: for example, if a target is close enough to the transmitter (i.e., $\lambda R_m/V < d$), but far away from the receiver (i.e., $\lambda R'_\ell/V' > d'$), we may have full transmit diversity, but reduced (or no) receive diversity.

The architecture in Figure 1 has been introduced and discussed by early studies on MIMO radar, such as [1]–[4]. Under uncorrelated Gaussian scattering and disturbance the target detectability may be enhanced by transmitting a set of orthogonal waveforms and performing disjoint energy detection at each receive antenna. In this case, the probability of a target miss vanishes as the LM-th power of the signal-to-
disturbance ratio (SDR), and LM can be interpreted as the number of degrees of freedom (DOF) granted by the MIMO architecture. The concept of system DOF has been further developed in [5]–[7], wherein space-time coding (STC) for MIMO radar has been introduced: relaxing the orthogonality hypothesis, and assuming that the set of the admissible transmitted waveforms spans an N-dimensional linear space grants a number of DOF which is $L \min\{N, M\}$. STC is beneficial when the overall disturbance exhibits a temporal correlation and is a means for compromising between number of diversity paths and amount of energy integration along each active path, as shown in [8], [9]. More studies involving the concept of STC are [10] and [11], both concerned with target identification and classification in white Gaussian noise, the former in the context of waveform optimization and the latter in the context of robust design for uncertain target state information.

From all of the above studies a number of conclusions can be drawn. Figure 1 shows that the degree of spatial correlation among the different rays depends upon the range of the target, on top of its extension and carrier frequency: as a consequence, this correlation – and ultimately the number of degrees of freedom that can be exploited – are not under the designer’s control. Likewise, the assumptions that the overall disturbance at the receive antennas have a known (time) correlation and are spatially independent are themselves questionable, since they may be fulfilled for a particular set of range cells, but not for the whole controlled area.

These considerations pose the problem of a robust waveform design in the presence of prior uncertainty as to the target response and disturbance characteristics. In this context, the contribution of the paper can be summarized as follows.

- We consider a min-max waveform design under a transmit energy constraint. Lacking a consensus as to what is a valuable performance measure for MIMO radar system, we solve the min-max problem for a general class of cost functions, subsuming many of the performance figures considered so far.
- A number of different scenarios are investigated. We first consider the situation that no prior information about the spatial correlation of the target scattering is available, but the disturbance covariance is known. Differently from previous works, in our model we account for both the transmit and the receive spatial correlation of the target scattering. Then, we consider the case of complete lack of prior information on both the disturbance and the target covariance.
- Our analysis shows that robust space-time code matrices must necessarily have rank M (i.e., rank equal to the number of transmit antennas) in order to prevent any target hiding. If the disturbance covariance matrix is known, then transmission must take place along the least interfered directions in the signal space, and more power must be allocated to more interfered modes. Otherwise isotropic

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
transmission turns out to be a min-max choice.

- The same min-max solution applies to many commonly adopted performance measures, such as the signal-to-disturbance ratio, the linear minimum mean square error in estimating the unknown target response, the mutual information between the received signal echoes and the target response, and the approximation of the detection probability in the high- and low-signal regimes for a fixed probability of false alarm.

- General relationships for the achievable performance under min-max design are derived, and compared with the corresponding performance that can be obtained under optimum design (i.e., with prior target/clutter information) or in the absence of STC.

The remainder of the paper is organized as follows. In the next section, we introduce the signal model for the considered MIMO radar system and state the problem of robust waveform design. Section III presents the results in the case where there is no spatial correlation among the receive antennas, while Section IV contains the corresponding analytical proofs. Section V discusses some commonly adopted cost functions which fall in the considered category. In Section VI the case where the receive antennas exhibit a spatial correlation is addressed. In Section VII some numerical examples are presented. Concluding remarks are given in Section VIII. Finally, the Appendix contains some mathematical derivations.

Notation: In what follows, \mathbb{R} and \mathbb{C} denote the sets of real and complex numbers, respectively. \mathbb{R}^n ($\mathbb{R}^{m \times n}$) and \mathbb{C}^n ($\mathbb{C}^{m \times n}$) are the sets of $n \times 1$ vectors ($m \times n$ matrices) with entries from \mathbb{R} and \mathbb{C}, respectively. Column vectors and matrices are indicated through boldface lowercase and uppercase letters, respectively. x_i is the i-th entry of $x \in \mathbb{C}^n$, and A_{ij} is the entry (i, j) of $A \in \mathbb{C}^{m \times n}$. $\text{diag}\{a_1, \ldots, a_n\} \in \mathbb{C}^{n \times n}$ is the diagonal matrix with a_1, \ldots, a_n on the main diagonal, I_m is the identity matrix of order m, and $O_{m,n}$ is the $m \times n$ zero matrix. $(\cdot)^T$ and $(\cdot)^H$ denote transpose and conjugate transpose, respectively. \mathcal{M}_n denotes the set of Hermitian, positive semidefinite matrices from $\mathbb{C}^{n \times n}$. A^{-1} is the inverse of a nonsingular matrix $A \in \mathbb{C}^{n \times n}$. $A^{1/2}$ is the unique positive semidefinite square root of $A \in \mathcal{M}_n$. $\{\lambda_i(A)\}_{i=1}^n$ is the set of eigenvalues of $A \in \mathbb{C}^{n \times n}$; if A is Hermitian the eigenvalues are sorted in descending order, i.e., $\lambda_1(A) \geq \cdots \geq \lambda_n(A)$, and $\lambda_{\text{max}}(A) = \lambda_1(A)$, $\lambda_{\text{min}}(A) = \lambda_n(A)$. $\text{tr}(A)$ and $\text{rank}(A)$ are the trace and the rank of $A \in \mathbb{C}^{n \times n}$, respectively, while \otimes denotes the Kronecker (tensor) product. A function $\phi : \mathcal{A} \subseteq \mathbb{R}^n \to \mathbb{R}$ is symmetric if for any $x \in \mathcal{A}$, $\pi(x) \in \mathcal{A}$ and $\phi(x) = \phi(\pi(x))$, for every permutation π. A function $\phi : \mathcal{A} \subseteq \mathbb{R}^n \to \mathbb{R}$ is increasing if for any $x, y \in \mathcal{A}$, $\phi(x) \leq \phi(y)$ whenever $x_i \leq y_i$, $\forall i = 1, \ldots, n$. Finally, E denotes statistical expectation.
II. PROBLEM STATEMENT

Consider an \(M \times L \) statistical MIMO radar whose task is to detect the presence of a target in a given range cell. Following the model of [6]–[8], the signal at the \(\ell \)-th receive antenna, \(\ell = 1, \ldots, L \), can be expressed as

\[
r_{\ell} = \begin{cases}
A\alpha_{\ell} + w_{\ell}, & \text{under } H_1 \\
w_{\ell}, & \text{under } H_0
\end{cases}
\]

where \(r_{\ell} \in \mathbb{C}^N \), \(N \) being the signal space dimension (for example, in a pulsed radar system \(N \) is the number of coded pulses transmitted by each antenna and jointly processed by the receiver); \(A \in \mathbb{C}^{N \times M} \) is the space-time code-matrix, whose \(m \)-th column represents the codeword transmitted by the \(m \)-th transmit antenna; \(\alpha_{\ell} \in \mathbb{C}^M \) is the unknown random target response (the \(m \)-th entry is the scattering from antenna \(m \) to antenna \(\ell \)); finally, \(w_{\ell} \in \mathbb{C}^N \) is the overall disturbance (e.g., thermal noise and reverberation from the environment). In the following, we assume that \(\alpha = (\alpha_1^T \cdots \alpha_L^T)^T \) and \(w = (w_1^T \cdots w_L^T)^T \) are mutually-independent, zero-mean, random vectors with covariance matrices \(I_L \otimes R_{\alpha} \) and \(I_L \otimes R_{w} \), respectively.\(^1\) For future reference, we denote by \(U_{w} \Lambda_{w} U_{w}^H \) the spectral decomposition of \(R_{w} \), where \(U_{w} \in \mathbb{C}^{N \times N} \) is unitary, and \(\Lambda_{w} = \text{diag} \{ \lambda_1(R_w), \ldots, \lambda_N(R_w) \} \), with \(\lambda_{\min}(R_w) \geq N_0 \), \(N_0 \) the thermal noise floor. Also, \(\text{tr}(AA^H) \) represents the radiated energy, while the SDR under the hypothesis \(H_1 \) is defined as

\[
\text{SDR} = E \left[\sum_{\ell=1}^{L} \| R_w^{-1/2} A\alpha_{\ell} \|^2 \right] = L \text{tr}(R_w^{-1/2} A R_{\alpha} A^H R_w^{-1/2}) = L \sum_{i=1}^{\Delta} \lambda_i(R_w^{-1/2} A R_{\alpha} A^H R_w^{-1/2})
\]

where \(\Delta = \min\{M, N\} \).

A. Equivalent MIMO channel

Let \(U \Sigma V^H \) be the singular value decomposition of \(R_w^{-1/2} A R_{\alpha} A^H R_w^{-1/2} \), where \(U \in \mathbb{C}^{N \times N} \) and \(V \in \mathbb{C}^{M \times M} \) are unitary, and \(\Sigma \in \mathbb{R}^{N \times M} \) is a diagonal matrix with \(\Sigma_{ii} = \lambda_i^{1/2}(R_w^{-1/2} A R_{\alpha} A^H R_w^{-1/2}) \), if \(i \leq \Delta \), and

\(^1\)To simplify the exposition, no spatial receive correlation is assumed at this stage. In section VI, the results will be extended to the case where \(E[\alpha \alpha^H] = Q_{\alpha} \otimes R_{\alpha} \) and \(E[ww^H] = Q_{w} \otimes R_{w} \), for \(Q_{\alpha}, Q_{w} \in \mathcal{M}_L \), \(Q_{w} \) full-rank.
\[\Sigma_{ii} = 0, \text{ otherwise; also, let } \tilde{\alpha}_\ell \text{ be such that } \mathbb{E}[\tilde{\alpha}_\ell \tilde{\alpha}_\ell^H] = I_M \text{ and } \alpha_\ell = R_{\alpha}^{1/2} \tilde{\alpha}_\ell, \ell = 1, \ldots, L. \] Then, the received signal in (1) can be equivalently represented under \(H_1 \) as
\[
\tilde{r}_\ell = R_{\alpha}^{-1/2} r_\ell = U \Sigma V^H \tilde{\alpha}_\ell + R_{\alpha}^{-1/2} w_\ell
\]
and \(\lambda_i(R_{\alpha}^{-1/2} A R_{\alpha} A^H R_{\alpha}^{-1/2}) \) can be interpreted as the SDR along the \(i \)-th eigenmode of an equivalent MIMO channel corrupted by additive white disturbance, whose inputs are the uncorrelated entries of \(\tilde{\alpha}_\ell \), and whose impulse response is \(R_{\alpha}^{-1/2} A R_{\alpha}^{1/2} \) [12].

B. Cost function and code design

Optimal waveform design amounts to choosing the code-matrix \(A \) so as to minimize a given cost function (or equivalently maximize the corresponding figure of merit) under a transmit energy constraint. In the sequel, we focus on the class of cost functions taking on the general form
\[
f \left(\lambda(R_{\alpha}^{-1/2} A R_{\alpha} A^H R_{\alpha}^{-1/2}) \right)
\]
where \(\lambda(R_{\alpha}^{-1/2} A R_{\alpha} A^H R_{\alpha}^{-1/2}) \) is a \(\Delta \)-dimensional vector whose \(i \)-th entry is \(\lambda_i(R_{\alpha}^{-1/2} A R_{\alpha} A^H R_{\alpha}^{-1/2}) \), and \(f : \mathbb{R}^\Delta \to \mathbb{R} \) is decreasing and Schur-convex. The rationale behind this class of cost functions is that \(\lambda_i(R_{\alpha}^{-1/2} A R_{\alpha} A^H R_{\alpha}^{-1/2}) \) represents the SDR along the \(i \)-th eigenmode of an equivalent MIMO channel, which justifies the assumption that \(f \) be decreasing. As to the Schur-convexity, this includes symmetry and convexity, which are common assumptions for cost functions. For future reference, we introduce the function \(f_1(x) = f((x \cdot \ldots \cdot 0)^T) \).

III. ROBUST CODE DESIGN

Robust waveform design aims at determining the code-matrix \(A \) so as to minimize the worst-case cost under all possible target covariance matrices. Also, we distinguish two relevant scenarios: known and unknown disturbance covariance matrix.

A. Known disturbance covariance

In this case, we are faced with the following
Problem 3.1: For given \(\mathcal{E} > 0 \) and \(\sigma_\alpha^2 > 0 \), find the code-matrix \(A \) which solves
\[
\min_A \max_{R_{\alpha}} f \left(\lambda(R_{\alpha}^{-1/2} A R_{\alpha} A^H R_{\alpha}^{-1/2}) \right)
\]
s.t. \(A \in \mathbb{C}^{N \times M}, \quad \text{tr}(A^H A) \leq \mathcal{E} \)
\[
R_{\alpha} \in \mathcal{M}_M, \quad \text{tr}(R_{\alpha}) \geq \sigma_\alpha^2.
\]
Notice that E is the maximum energy available for transmission, while the constraint on $\text{tr}(R_\alpha)$ ensures a minimum level of energy backscattered from the target (otherwise no detection would be possible).

As shown in Section IV-A, if $N < M$ there always exist targets that cannot be observed, i.e., SDR = 0, no matter how the energy is radiated; hence, the worst case cost is always $f_1(0)$, independently of the choice of the code matrix A. In order to ensure observability of all possible targets we must necessarily have $N \geq M$. In this case, a solution is

$$A = \sqrt{\frac{E}{\text{tr}(\Lambda_w^{(\pi)})}} U_w^{(\pi)} (\Lambda_w^{(\pi)})^{1/2} V^H$$

where π is the function defined as $\pi(i) = N - M + i, i = 1, \ldots, M$, $U_w^{(\pi)}$ is the submatrix of U_w formed by the columns $\pi(1), \ldots, \pi(M)$, $A_w^{(\pi)}$ is the principal submatrix of A_w formed by the rows and columns with indices $\pi(1), \ldots, \pi(M)$, and $V \in \mathbb{C}^{M \times M}$ is an arbitrary unitary matrix.

Solution (4) deserves some comments. The min-max code matrix is rank M, otherwise all targets lying in the null space of A would be missed. If $N = M$, we can simply take $A = \sqrt{E/\text{tr}(R_w)} R_w^{1/2}$. The permutation π establishes that the left singular vectors of the code matrix are matched to the eigenvectors of R_w corresponding to the M smallest eigenvalues; this choice ensures that the M least interfered directions in the signal space are selected for transmission. The right singular vectors, instead, cannot be matched to R_α, since it is unknown, and therefore V can be arbitrarily chosen. The singular values are chosen so that more energy is allocated to more interfered modes in order to equalize their SDR’s. The intuition behind this choice is to make every selected direction “equivalent,” so that one is prepared to every possible target. Under this coding strategy, the min-max cost is $f_1 \left(E \sigma^2_\alpha / \sum_{i=1}^M \lambda_{N-i+1}(R_w) \right)$ which becomes $f_1 \left(E \sigma^2_\alpha / \text{tr}(R_w) \right)$ if $N = M$, and occurs when rank$(R_\alpha) = 1$. Finally, it is important to stress that, unlike other studies, here the knowledge of the target position and RCS is not needed. Indeed, σ^2_α is a constant that determines only the value of the SDR: in any case, the code-matrix is unaltered.

B. Unknown disturbance covariance

We now investigate robust STC when the disturbance covariance matrix is unknown. In this case, the worst-case cost has to be computed over all possible disturbance and target covariance scenarios. Hence, we have
Problem 3.2: For given $E > 0$, $\sigma_\alpha^2 > 0$, and $\sigma_w^2 \geq NN_0$, find the code-matrix A which solves

$$\min_A \max_{R_\alpha, R_w} f(\lambda(R_w^{-1/2}AR_\alpha A^H R_w^{-1/2}))$$

s.t. $A \in \mathbb{C}^{N \times M}$, $\text{tr}(A^HA) \leq E$

$R_\alpha \in \mathcal{M}_M$, $\text{tr}(R_\alpha) \geq \sigma_\alpha^2$

$R_w \in \mathcal{M}_N$, $\text{tr}(R_w) \leq \sigma_w^2$

$\lambda_{\min}(R_w) \geq N_0$.

E represents again the maximum transmit energy; the constraint on $\text{tr}(R_\alpha)$ ensures a minimum level of energy backscattered from the target, while the constraint on $\text{tr}(R_w)$ bounds the disturbance power.

As shown in Section IV-B, if $N < M$ the worst case cost is always $f_1(0)$, independently of the choice of A, since there always exists targets lying in the null-space of A that cannot be observed. Again, to ensure observability of all possible targets we must necessarily have $N \geq M$. In this case, a solution is

$$A = \sqrt{E/M} U \quad (5)$$

where $U \in \mathbb{C}^{N \times M}$ is an arbitrary matrix such that $U^H U = I_M$.

It is interesting to compare solution (5) with solution (4). In both cases, the code rank is equal to M. However, since now R_w is unknown, the transmitter cannot match the left singular vectors of A to the least interfered directions in the signal space. Solution (5) amounts to illuminate the target isotropically. In particular, if only one power amplifier is available, A can be taken equal to $\sqrt{E/M} \left[I_{M} O_{M,N} - M \right]^T$. This motivates the adoption of the orthogonal waveforms (widely used in MIMO radars) in the absence of target and disturbance information, which here naturally arises as the solution to a min-max problem for a wide class of cost functions. Finally, the min-max cost is $f_1 \left(\frac{E \sigma^2}{M(\sigma^2_w - (N-1)N_0)} \right)$ and occurs when $R_{\alpha} = \sigma_{\alpha}^2 xx^H$ and $R_w = N_0 I_N + (\sigma_w^2 - NN_0)UU^H$, for some norm-one $x \in \mathbb{C}^M$.

IV. PROBLEMS’ SOLUTIONS

Here we give the solutions to the min-max problems posed in the previous section.

A. Solution to Problem 3.1

As to the max-part, we need to solve

$$\max_{R_\alpha} f(\lambda(R_w^{-1/2}AR_\alpha A^H R_w^{-1/2}))$$

s.t. $R_\alpha \in \mathcal{M}_M$, $\text{tr} (R_\alpha) \geq \sigma_\alpha^2$
for fixed A. From Schur-convexity of f, we have

$$f(\lambda(R_w^{1/2}AR_\alpha A^H R_w^{-1/2})) \leq f_1(\text{tr}(R_\alpha A^H R_w^{-1}A)) \quad (6)$$

Furthermore

$$\text{tr}(R_\alpha A^H R_w^{-1}A) \geq \sum_{i=1}^M \lambda_i(R_\alpha)\lambda_{M-i+1}(A^H R_w^{-1}A) \geq \sum_{i=1}^M \lambda_i(R_\alpha)\lambda_{\min}(A^H R_w^{-1}A) = \text{tr}(R_\alpha)\lambda_{\min}(A^H R_w^{-1}A) \geq \sigma_\alpha^2 \lambda_{\min}(A^H R_w^{-1}A) \quad (7)$$

where the last inequality follows from the constraint on $\text{tr}(R_\alpha)$ and the first from [13, Theorem 9.H.1.h]

Theorem 4.1: If $U, V \in \mathcal{M}_n$, then $\text{tr}(UV) \geq \sum_{i=1}^n \lambda_i(U)\lambda_{n-i+1}(V)$. Equations (6) and (7), and the fact that f_1 is decreasing implies that

$$f(\lambda(R_w^{1/2}AR_\alpha A^H R_w^{-1/2})) \leq f_1(\sigma_\alpha^2 \lambda_{\min}(A^H R_w^{-1}A)) \quad (8)$$

and equality holds when $R_\alpha = \sigma_\alpha^2 vv^H$, where v is the norm-one eigenvector corresponding to the minimum eigenvalue of $A^H R_w^{-1}A$.

As to the min-part, we need to solve

$$\min_A f_1(\sigma_\alpha^2 \lambda_{\min}(A^H R_w^{-1}A)) \quad \text{s.t.} \quad A \in \mathbb{C}^{N \times M}, \quad \text{tr}(A^H A) \leq E$$

and, since f_1 is decreasing, $\lambda_{\min}(A^H R_w^{-1}A)$ is to be maximized. If $N < M$, $\lambda_{\min}(A^H R_w^{-1}A) = 0$ and the worst-case cost is $f_1(0)$ for any choice of A. Conversely, if $N \geq M$, the worst-case cost can be made smaller than $f_1(0)$ by optimizing the choice of A. To this end, notice that

$$\lambda_{\min}(A^H R_w^{-1}A) \leq \text{tr}(A^H R_w^{-1}A)/M$$

and equality holds if $A^H R_w^{-1}A = cI_M$, for some $c > 0$. Then the code-matrix must be of the form $A = U_w^{(\pi)}(cA_w^{(\pi)})^{1/2}V^H$, where π is a set of M different integers taken from $\{1, \ldots, N\}$, $U_w^{(\pi)}$ is the submatrix of U_w formed by the columns indexed by π, $A_w^{(\pi)}$ is the principal submatrix of A_w formed.
by the rows and columns indexed by \(\pi \), and \(V \in \mathbb{C}^{M \times M} \) is an arbitrary unitary matrix. At this point, the problem reduces to

\[
\max_{\pi} \ c \\
\text{s.t. } c \text{ tr}(A(\pi)) \leq E
\]

and then a solution is \(\pi = \{N - M + 1, \ldots, N\} \), which is that in (4).

B. Solution to Problem 3.2

As to the \(\max \)-part, we need to solve

\[
\max_{R_\alpha, R_w} \ f(\lambda(R_w^{-1/2} A R_\alpha A^H R_w^{-1/2})) \\
\text{s.t. } R_\alpha \in \mathcal{M}_M, \quad \text{tr}(R_\alpha) \geq \sigma_\alpha^2 \\
R_w \in \mathcal{M}_N, \quad \text{tr}(R_w) \leq \sigma_w^2 \\
\lambda_{\min}(R_w) \geq N_0.
\]

for fixed \(A \). As in Section IV-A, we find that \(R_\alpha = \sigma_\alpha^2 v v^H \), where \(v \) is the norm-one eigenvector corresponding to the minimum eigenvalue of \(A^H R_w^{-1} A \), so that the problem reduces to

\[
\min_{R_w} \quad \lambda_{\min}(A^H R_w^{-1} A) \\
\text{s.t. } R_w \in \mathcal{M}_N, \quad \text{tr}(R_w) \leq \sigma_w^2 \\
\lambda_{\min}(R_w) \geq N_0.
\]

Notice now that

\[
\lambda_{\min}(A^H R_w^{-1} A) = \min_{i \in \{1, \ldots, M\}} \lambda_i(R_w^{-1/2} A A^H R_w^{-1/2}) \\
= \min_{i \in \{1, \ldots, M\}} \theta_i \lambda_i(A A^H)
\]

for some \(\theta_i \in [\lambda_{\min}(R_w^{-1}), \lambda_{\max}(R_w^{-1})] \), where the last equality follows from [14, Corollary 4.5.11]

Theorem 4.2: Let \(M, S \in \mathbb{C}^{n \times n} \), and let \(M \) be Hermitian, then, for each \(i = 1, \ldots, n \), there exists \(\theta_i \geq 0 \) such that \(\lambda_i(S S^H) \leq \theta_i \leq \lambda_1(S S^H) \), and \(\lambda_i(S M S^H) = \theta_i \lambda_i(M) \).
Further developing (9), we have
\[
\lambda_{\text{min}}(A^H R_w^{-1} A) = \min_{i \in \{1, \ldots, M\}} \theta_i \lambda_i(AA^H) \\
\geq \frac{\lambda_{\text{min}}(A^H A)}{\lambda_{\text{max}}(R_w)} \\
\geq \frac{\lambda_{\text{min}}(A^H A)}{\sigma^2_w - (N - 1)N_0}
\]
where the last inequality follows from the constraints on R_w. This is the minimum and is attained for
\[R_w = N_0 I_N + (\sigma^2_w - N N_0) uu^H,\]
where u is the norm-one eigenvector corresponding to the minimum eigenvalue of AA^H, and $R_\alpha = \sigma^2_\alpha vv^H$, where v is the norm-one eigenvector corresponding to the minimum eigenvalue of $A(N_0 I_N + (\sigma^2_w - N N_0) uu^H)^{-1} A^H$.

As to the min-part, we need to solve
\[
\min_A f_1 \left(\frac{\sigma^2_\alpha \lambda_{\text{min}}(A^H A)}{\sigma^2_w - (N - 1)N_0} \right) \\
\text{s.t. } A \in \mathbb{C}^{N \times M}, \quad \text{tr}(A^H A) \leq \mathcal{E}
\]
and, since f_1 is decreasing, $\lambda_{\text{min}}(A^H A)$ is to be maximized. If $N < M$, $\lambda_{\text{min}}(A^H A) = 0$ and the worst-case cost is $f_1(0)$ for any choice of A. Conversely, if $N \geq M$, the worst-case cost can be made smaller than $f_1(0)$ by optimizing the choice of A. In particular, the minimum cost is attained by taking A such that $A^H A = \sqrt{\mathcal{E}/M} I_M$, i.e., the solution in (5).

V. EXAMPLES OF COST FUNCTIONS

We now discuss some typically-used cost functions that take the form (3).

A. Signal-to-disturbance ratio

Following [7], [15], a meaningful figure of merit for code design is the SDR defined in (2), and the corresponding cost function is $-SDR$. In general, from [13, Table 3.1], any increasing function of $-SDR$ is a cost function of the form (3), irrespectively of the distributions of the target scattering and of the disturbance.

B. Linear minimum mean square error

Let $\hat{\alpha}_\ell$ be such that $\mathbb{E}[(\hat{\alpha}_\ell \hat{\alpha}_\ell^H)] = I_M$ and $\alpha_\ell = R_\alpha^{1/2} \hat{\alpha}_\ell$, $\ell = 1, \ldots, L$. Then the error covariance matrix of a linear minimum mean square error (LMMSE) estimator of the scattering coefficients $\{\hat{\alpha}_\ell\}_{\ell=1}^L$ from the received observables $\{r_\ell\}_{\ell=1}^L$ is [16, Theorem 12.1]
\[
C_{\text{err}} = I_L \otimes \left(I_M + R_\alpha^{1/2} A^H R_w^{-1} A R_\alpha^{1/2} \right)^{-1}
\]
and the LMMSE takes the form

$$\text{LMMSE} = L \sum_{i=1}^{M} \frac{1}{1 + \lambda_i \left(R_{w}^{1/2} A^H R_{w}^{-1} A \alpha_i \right)}$$

$$= L \sum_{i=1}^{\Delta} \frac{1}{1 + \lambda_i \left(R_{w}^{-1/2} A \alpha_i A^H R_{w}^{-1/2} \right)}$$

$$+ L \max\{M - N, 0\} \tag{11}$$

This implies that the LMMSE (and, from [13, Table 3.1], any increasing function thereof) is a cost function of the form (3), irrespectively of the distributions of target scattering and disturbance. Notice that if \(\{\alpha_i\}_{i=1}^{L}\) and \(\{w_i\}_{i=1}^{L}\) are Gaussian, circularly symmetric, Equation (11) represents also the minimum mean square error and the variance of the maximum a posteriori estimator.

C. Mutual information

Let MI be the mutual information between \(\{\alpha_i\}_{i=1}^{L}\) and \(\{r_i\}_{i=1}^{L}\) under \(H_1\), also equal to the mutual information between \(\{\hat{\alpha}_i\}_{i=1}^{L}\) and \(\{r_i\}_{i=1}^{L}\). If the overall disturbance \(\{w_i\}_{i=1}^{L}\) and the scattering coefficients \(\{\alpha_i\}_{i=1}^{L}\) are Gaussian, circularly-symmetric, then we can write

$$\text{MI} = L \sum_{i=1}^{\Delta} \log \left(1 + \lambda_i \left(R_{w}^{-1/2} A \alpha_i A^H R_{w}^{-1/2} \right) \right).$$

Since MI is Schur concave and increasing, from [13, Table 3.1] any decreasing function of MI (e.g., \(-\text{MI}\)) is of the form (3).

D. Approximate miss probability

If \(\{w_i\}_{i=1}^{L}\) is Gaussian and circularly-symmetric, the generalized likelihood ratio test for the detection problem (1) takes the form [6]–[8]

$$\sum_{\ell=1}^{L} \| P_{\perp} R_{w}^{-1/2} r_{\ell} \|_{2}^{2} \gtrless \eta$$

where \(P_{\perp}\) is the orthogonal projector onto the range span of \(R_{w}^{-1/2} A\), and \(\eta\) is the detection threshold, to be set based upon the desired false alarm probability, \(P_{fa}\). In this case we have [6]–[8]

$$P_{fa} = e^{-\eta} \sum_{k=0}^{\text{rank}(A)-1} \frac{\eta^k}{k!} \tag{12a}$$

$$P_{\text{miss}} = 1 - E \left[Q_{L, \text{rank}(A)} \left(\sqrt{2 \sum_{\ell=1}^{L} \| R_{w}^{-1/2} A \alpha_\ell \|_{2}^{2}}, \sqrt{2\eta} \right) \right] \tag{12b}$$

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
where P_{miss} is the miss probability, and $Q_m : \mathbb{R}^2 \rightarrow \mathbb{R}$ denotes the generalized Marcum function of order m.

Unfortunately, expression (12b) does not allow drawing general conclusions, whereby we analyze its behavior in the low- and high-SDR regions. First, in order to prevent any target hiding in the null space of A, which would lead to $1 - P_{\text{miss}} = P_{\text{fa}}$, the rank of the code-matrix must be M. Now, in the low-SDR region, truncating the series expansion of Q_m [17, Equation (6)] to the first-order term, yields

$$P_{\text{miss}} \approx 1 - P_{\text{fa}} - LN \left(P_{\text{fa}} + \frac{e^{-\eta ML}}{(ML)!} \right) \text{SDR}$$

and therefore the miss probability can be approximated by a function of the form (3), irrespectively of the target scattering distribution. In the high-SDR regime, instead, we can approximate P_{miss} with its Chernoff’s bound [6], [8], [9], which, for the case of Gaussian and circularly-symmetric $\{\alpha_i\}_{i=1}^L$, recalling that $\text{rank}(A) = M$, takes the form

$$P_{\text{miss}} \approx \min_{\gamma \geq 0} \Phi(\gamma, \lambda(R_w^{-1/2} A R_{\alpha} A^H R_w^{-1/2}))$$

where $\Phi(\gamma, x) = e^{\gamma x - \sum_{i=1}^\Delta \ln(1+\gamma(1+x_i))}$. While Φ is Schur-convex and decreasing in $\lambda(R_w^{-1/2} A R_{\alpha} A^H R_w^{-1/2})$ for γ fixed, in general, $\min_{\gamma \geq 0} \Phi$ is not. However, as shown in Appendix A, the min-max design and the minimum over γ can be interchanged, and then robustification can be carried out for the function Φ, which is of the form (3).

VI. SPATIAL RECEIVE CORRELATION

Consider now the general case $\mathbb{E}[\alpha\alpha^H] = Q_{\alpha} \otimes R_{\alpha}$ and $\mathbb{E}[w^2] = Q_w \otimes R_w$, where $Q_{\alpha}, Q_w \in \mathcal{M}_L$, $\text{tr}(Q_{\alpha}) = \text{tr}(Q_w) = L$, and $\lambda_{\min}(Q_w) \geq \varepsilon_0$, with $0 < \varepsilon_0 \leq 1/L$. In this case the received observations can be cast in the LN-dimensional vector

$$r = (r_1^T \cdots r_L^T)^T = \begin{cases} (I_L \otimes A)\alpha + w, & \text{under } H_1 \\ w, & \text{under } H_0 \end{cases}$$

and the SDR under H_1 can be defined as

$$\text{SDR} = \mathbb{E} \left[\| (Q_w \otimes R_w)^{-1/2} (I_L \otimes A)\alpha \|^2 \right]$$

$$= \text{tr} \left((Q_w \otimes R_w)^{-1/2} (I_L \otimes A) \right.$$

$$\cdot (Q_{\alpha} \otimes R_{\alpha})(I_L \otimes A)^H (Q_w \otimes R_w)^{-1/2})$$

$$= \text{tr} \left((Q_w^{-1/2} Q_{\alpha} Q_w^{-1/2}) \otimes (R_w^{-1/2} A R_{\alpha} A^H R_w^{-1/2}) \right).$$
The cost function now is
\[f : \mathbb{R}^{L\Delta} \to \mathbb{R} \]
and depends on the eigenvalues of the matrix
\[\left(Q_w^{-1/2} Q_\alpha Q_w^{-1/2} \right) \otimes \left(R_w^{-1/2} A R_\alpha A^H R_w^{-1/2} \right) \]
i.e., on \(\lambda \left(\left(Q_w^{-1/2} Q_\alpha Q_w^{-1/2} \right) \otimes \left(R_w^{-1/2} A R_\alpha A^H R_w^{-1/2} \right) \right) \), which is a \(L\Delta \)-dimensional vector whose entry \(\Delta(\ell - 1) + i \) is
\[\lambda_{\ell}(Q_w^{-1/2} Q_\alpha Q_w^{-1/2}) \lambda_i(R_w^{-1/2} A R_\alpha A^H R_w^{-1/2}) \]
for \(\ell = 1, \ldots, L, i = 1, \ldots, \Delta \).

At this point, Problem 3.1 can be restated as follows.

Problem 6.1: For a given \(E > 0 \) and \(\sigma_\alpha^2 > 0 \), find the code-matrix \(A \) which solves

\[
\begin{align*}
\min_A & \quad \max_{R_\alpha, Q_\alpha} f \left(\lambda \left(\left(Q_w^{-1/2} Q_\alpha Q_w^{-1/2} \right) \right. \\
& \quad \left. \otimes \left(R_w^{-1/2} A R_\alpha A^H R_w^{-1/2} \right) \right) \right) \\
\text{s.t.} & \quad A \in \mathbb{C}^{N \times M}, \quad \text{tr}(A^H A) \leq E \\
& \quad R_\alpha \in \mathcal{M}_M, \quad \text{tr}(R_\alpha) \geq \sigma_\alpha^2 \\
& \quad Q_\alpha \in \mathcal{M}_L, \quad \text{tr}(Q_\alpha) = L \\
\end{align*}
\]

On the other hand, Problem 3.2 becomes

Problem 6.2: For given \(E > 0, \sigma_\alpha^2 > 0, \) and \(\sigma_w^2 \geq N N_0 \), find the code-matrix \(A \) which solves

\[
\begin{align*}
\min_A & \quad \max_{R_\alpha, Q_\alpha, R_w, Q_w} f \left(\lambda \left(\left(Q_w^{-1/2} Q_\alpha Q_w^{-1/2} \right) \right. \\
& \quad \left. \otimes \left(R_w^{-1/2} A R_\alpha A^H R_w^{-1/2} \right) \right) \right) \\
\text{s.t.} & \quad A \in \mathbb{C}^{N \times M}, \quad \text{tr}(A^H A) \leq E \\
& \quad R_\alpha \in \mathcal{M}_M, \quad \text{tr}(R_\alpha) \geq \sigma_\alpha^2 \\
& \quad Q_\alpha \in \mathcal{M}_L, \quad \text{tr}(Q_\alpha) = L \\
& \quad R_w \in \mathcal{M}_N, \quad \text{tr}(R_w) \leq \sigma_w^2 \\
& \quad Q_w \in \mathcal{M}_L, \quad \text{tr}(Q_w) = L \\
& \quad \lambda_{\min}(R_w) \geq N_0, \quad \lambda_{\min}(Q_w) \geq \varepsilon_0.
\end{align*}
\]

As shown in Appendix B, the case \(N < M \) is trivial for both problems since the worst case cost is
always \(f_1(0) \), independently of the choice of \(A \). On the other hand, if \(N \geq M \), a solution is

\[
A = \begin{cases}
\sqrt{\mathcal{E} / \text{tr}(\Lambda_w(\pi))} U_w(\pi) (\Lambda_w(\pi))^{1/2} V H, & \text{for Problem 6.1} \\
\sqrt{\mathcal{E} / M} U, & \text{for Problem 6.2}
\end{cases}
\]

i.e., the same code matrix found in Section III; hence, the presence of a spatial receive correlation in the target scattering does not affect the min-max solution.

Finally, the cost functions given in Section V become

\[
\begin{align*}
\text{SDR} &= \sum_{\ell=1}^{L} \sum_{i=1}^{\Delta} \lambda(\gamma \mathcal{E}^{-1/2} Q \alpha Q_w^{-1/2}) \\
&\quad \cdot \lambda_i(R_w^{-1/2} A R \alpha A^H R_w^{-1/2}) \\
\text{MI} &= \sum_{\ell=1}^{L} \sum_{i=1}^{\Delta} \log \left(1 + \lambda(\gamma \mathcal{E}^{-1/2} Q \alpha Q_w^{-1/2}) \\
&\quad \cdot \lambda_i(R_w^{-1/2} A R \alpha A^H R_w^{-1/2}) \right) \\
\text{LMMSE} &= \sum_{\ell=1}^{L} \sum_{i=1}^{\Delta} \left(1 + \lambda(\gamma \mathcal{E}^{-1/2} Q \alpha Q_w^{-1/2}) \\
&\quad \cdot \lambda_i(R_w^{-1/2} A R \alpha A^H R_w^{-1/2}) \right)^{-1} \\
&\quad + L \max\{M - N, 0\}
\end{align*}
\]

and are all Schur-convex and decreasing. As to the miss probability we have

\[
P_{\text{miss}} \approx \begin{cases}
1 - P_{\text{fa}} - LN \left(P_{\text{fa}} + \frac{e^{-\eta \mathcal{E}}}{(ML)!} \right) \text{SDR}, & \text{if SDR} \ll 1 \\
\min_{\gamma \geq 0} \Phi(\gamma, \lambda) \left((\gamma \mathcal{E}^{-1/2} Q \alpha Q_w^{-1/2}) \right) \right), & \text{if SDR} \gg 1
\end{cases}
\]

where now \(\Phi(\gamma, x) = e^{\gamma \eta - \sum_{\ell=1}^{L} \sum_{i=1}^{\Delta} \text{ln}(1+\gamma(1+x(\ell_{i})_{+})),} \), and the considerations given in Section V-D retain their validity.

VII. NUMERICAL RESULTS

We consider a MIMO radar system with \(M = L = 2 \), \(N = 4 \), and \(P_{\text{fa}} = 10^{-4} \). We assume circularly-symmetric Gaussian scattering with \(Q \alpha = I_L \) and \(R \alpha = U \alpha \Lambda \alpha U^H \alpha \), where \(U \alpha \in \mathbb{C}^{2 \times 2} \) is unitary, \(\Lambda \alpha = \sigma^2 \alpha \text{diag}\{\rho \alpha, 1-\rho \alpha\} \), and \(\rho \alpha \in [0, 1] \). Also, we consider circularly-symmetric Gaussian disturbance with \(Q_w = I_L \) and \(R_w = N_0 I_N + \bar{R}_w \), with \(\xi = (N_0 N_0)^{-1} \text{tr}(\bar{R}_w) = 5 \text{ dB} \).
In Figures 2-5, we report the performance of the min-max codes versus ρ_α in terms of SDR, LMMSE, MI, and P_d, respectively. Several values of the transmitted energy contrast – defined as $\gamma = \sigma_\alpha^2 \mathcal{E} / (N N_0)$ – are considered. The plots are obtained by averaging over 1000 random realizations of \tilde{R}_w and U_α. For the sake of comparison, we also include the corresponding performance achievable when: (a) both disturbance and target covariance matrices are perfectly known to the transmitter (referred to as optimal coding); and (b) the transmitter has prior knowledge of the disturbance covariance matrix and of the eigenvectors of α, but always assumes $\rho_\alpha = 0$ (referred to as mismatched coding).

Several remarks are now in order. Notice first that the optimal STC strategy not only depends on the actual values of \tilde{R}_w and R_α, but more importantly on the adopted figure of merit. For example, maximizing the SDR requires to adopt a rank-one code-matrix [7], whose right and left singular vectors

Figure 2. SDR vs. ρ_α for $\gamma = 5, 15, 25$ dB, Gaussian scattering and disturbance, and $\xi = 5$ dB. Curves are obtained by averaging over 1000 random realizations of \tilde{R}_w and U_α.
are matched to the eigenvector of R_α with the largest eigenvalues, and to the eigenvector of \hat{R}_w with the smallest eigenvalues, respectively. Instead, optimizing the LMMSE or the MI requires to solve an energy-allocation problem, as shown in [6], [8], [10]. Finally, P_d-optimal codes can be found by numerical search, as shown in [18]. Independently of the adopted figure of merit, in the presence of erroneous prior information as to the target covariance matrix the system may experience arbitrarily large losses. In our examples, the performance of the mismatched codes rapidly degrades as $\rho_\alpha \to 1$, especially at higher values of the transmit energy contrast; the worst-case loss is observed for $\rho_\alpha = 1$, since the target is hidden in the null space of the transmit signal. On the other hand, the min-max strategy presents several advantages: the same solution applies to a large class of cost functions and is independent of the target parameters, simplifying the transmitter design; furthermore, its performance exhibits smooth variations.

Figure 3. LMMSE vs. ρ_α for $\gamma = -5, 5, 15$ dB, Gaussian scattering and disturbance, and $\xi = 5$ dB. Curves are obtained by averaging over 1000 random realizations of \hat{R}_w and U_α.

Copyright (c) 2011 IEEE. Personal use is permitted. For any other purposes, permission must be obtained from the IEEE by emailing pubs-permissions@ieee.org.
for different values of ρ_α. The min-max codes are full-rank, meaning that they experience the worst-case loss with respect to the optimal design for small values of γ and/or ill-conditioned R_α’s. In this case, indeed, the optimal code is rank-deficient (irrespective of the adopted figure of merit), and the energy should be opportunistically allocated to the most reliable channel mode, in keeping with the diversity-integration trade-off analysis in [8]. Conversely, the performance of the min-max codes is nearly optimal for large values of the transmit energy contrast and uncorrelated target scattering, in keeping with the asymptotic analysis presented in [9].

In Figures 6-9 we report the performance of the min-max code design versus γ in terms of SDR, LMMSE, MI, and P_d, respectively. The plots are obtained by averaging over 1000 random realizations of \bar{R}_w and U_α. As a benchmark, we include the corresponding performance achievable under optimal
coding and that provided by an uncoded transmission strategy, wherein A is a scaled all-one matrix. Despite the fact that the min-max codes ensure only maximization of the worst-case SDR, LMMSE, and MI, Figures 6-8 show that they outperform the uncoded transmission even in terms of average SDR, LMMSE, and MI. As to the average probability of detection, the uncoded transmission is superior for small values of γ. This is not surprising as, in this region, P_d critically depends on the code-matrix rank, and better performance is granted by rank-1 coding. Finally, we underline that the prior knowledge of the disturbance covariance matrix can give a significant gain.
VIII. CONCLUSIONS

In this work, we have addressed the problem of robust waveform design in the presence of prior uncertainty as to the spatial correlation of the target response for $M \times L$ MIMO radar systems. We have considered a general class of cost functions encompassing several known performance measures such as: (i) the signal-to-disturbance ratio and the linear minimum mean square error, under very general assumptions on the scattering and the disturbance model; and (ii) the mutual information and the approximation of the detection probability of the GLRT-detector in the large and small SDR regimes, under Gaussian scattering and disturbance. We have considered both the case that prior information about the second-order statistics of the disturbance are available at the receiver, and the case that such information is not accessible. In the former case, the M least interfered directions in the signal space must be selected for
Figure 7. LMMSE vs. γ, Gaussian scattering and disturbance, and $\xi = 5$ dB. Curves are obtained by averaging over 1000 random realizations of \bar{R}_w and R_α.

transmission, and more energy is to be allocated to more interfered modes in order to equalize their SDR’s. In the latter, isotropic transmission is the way to go. In any case, the rank of the min-max code-matrix must be equal to M in order to prevent any target miss. All these conclusions hold true independently of the spatial correlation exhibited at the receive sensors. Numerical examples have confirmed the theoretical analysis and have shown that in the presence of erroneous prior information as to the target covariance matrix the system may experience severe losses if no robustification is performed. They have also shown that the performance gap between the min-max design and the optimum one generally reduces as the energy contrast increases, and that the min-max strategy almost always outperform uncoded transmissions.
Figure 8. MI vs. γ, Gaussian scattering and disturbance, and $\xi = 5$ dB. Curves are obtained by averaging over 1000 random realizations of \bar{R}_w and R_α.

APPENDIX

A. Approximate miss probability

Problem 3.1 with the cost function in (13) becomes

$$\min_A \max_{\hat{R}_\alpha} \min_{\gamma} \Phi \left(\gamma, \lambda(R_w^{-1/2} AR_\alpha A^HR_w^{-1/2}) \right)$$

with the proper constraints. Now, we would like to interchange the order of $\max_{\hat{R}_\alpha}$ and \min_{γ} invoking the min-max theorem [19, Lemma 36.2]. To this end, we need to show that there exists a saddle point, i.e., a point $(\hat{\gamma}, \hat{R}_\alpha)$ such that

$$\Phi \left(\hat{\gamma}, \lambda(R_w^{-1/2} AR_\alpha A^HR_w^{-1/2}) \right) \leq \Phi \left(\hat{\gamma}, \lambda(R_w^{-1/2} A\hat{R}_\alpha A^HR_w^{-1/2}) \right)$$
Figure 9. P_d vs. γ, Gaussian scattering and disturbance, and $\xi = 5$ dB. Curves are obtained by averaging over 1000 random realizations of \hat{R}_w and R_α.

$$\Phi \left(\gamma, R_\alpha^{-1/2} A \hat{R}_w A^H R_\alpha^{-1/2} \right) \leq \Phi \left(\gamma, \sigma_\alpha^2 \lambda_{\min}(A^H R_w^{-1/2} A), 0, \ldots, 0 \right)$$

for all γ and R_α. However, for each fixed γ, Φ is a function of the form (3), and then, from Section IV-A,

$$\Phi \left(\gamma, \lambda (R_w^{-1/2} A \hat{R}_w A^H R_w^{-1/2}) \right) \leq \Phi \left(\gamma, \sigma_\alpha^2 \lambda_{\min}(A^H R_w^{-1/2} A), 0, \ldots, 0 \right)$$

for all R_α, and equality holds if $R_\alpha = \sigma_\alpha^2 vv^H$, where v is the norm-one eigenvector corresponding to the minimum eigenvalue of $A^H R_w^{-1/2} A$. Moreover, since $\Phi(\gamma, x)$ admits a minimum over γ for each fixed x, it results that

$$\dot{\gamma} = \arg \min_{\gamma} \Phi \left(\gamma, \sigma_\alpha^2 \lambda_{\min}(A^H R_w^{-1/2} A), 0, \ldots, 0 \right)$$

$$\dot{R}_\alpha = \sigma_\alpha^2 vv^H$$
is a saddle point, and then, from the min-max theorem,

$$
\min_{A} \max_{R_{\alpha}} \min_{\gamma} \Phi \left(\gamma, \lambda \left(R_{w}^{-1/2} A R_{\alpha} A^{H} R_{w}^{-1/2} \right) \right) = \min_{A} \max_{\gamma} \min_{R_{\alpha}} \Phi \left(\gamma, \lambda \left(R_{w}^{-1/2} A R_{\alpha} A^{H} R_{w}^{-1/2} \right) \right)
$$

and equality holds when Q_{α} is a saddle point, and then, from the min-max theorem,

$$
\min_{\gamma} \max_{A} \min_{R_{\alpha}} \Phi \left(\gamma, \lambda \left(R_{w}^{-1/2} A R_{\alpha} A^{H} R_{w}^{-1/2} \right) \right)
$$

The proof for Problem 3.2 is identical.

B. Solution to Problems 6.1 and 6.2

Consider first Problem 6.1. As to the max-part, we have

$$
f \left(\lambda \left(\left(Q_{w}^{-1/2} Q_{\alpha} Q_{w}^{-1/2} \right) \otimes \left(R_{w}^{-1/2} A R_{\alpha} A^{H} R_{w}^{-1/2} \right) \right) \right)
\leq f_{1} \left(\text{tr}(Q_{\alpha} Q_{w}^{-1}) \text{tr}(R_{\alpha} A^{H} R_{w}^{-1} A) \right)
\leq f_{1} \left(\frac{L \sigma_{\alpha}^{2} \lambda_{\min}(A^{H} R_{w}^{-1} A)}{\lambda_{\max}(Q_{w})} \right)
$$

and equality holds for $Q_{\alpha} = L u u^{H}$ and $R_{\alpha} = \sigma_{\alpha}^{2} v v^{H}$, where u is the norm-one eigenvector of Q_{w} corresponding to its maximum eigenvalue, and v is the norm-one eigenvector of $A^{H} R_{w}^{-1} A$ corresponding to its maximum eigenvalue. At this point, since f_{1} is decreasing, $\lambda_{\min}(A^{H} R_{w}^{-1} A)$ is to be maximized over $\text{tr}(A^{H} A) \leq \epsilon$, and this problem has been solved in Section IV-A.

Consider now Problem 6.2. Developing (14), and exploiting (10), we have

$$
f_{1} \left(\frac{L \sigma_{\alpha}^{2} \lambda_{\min}(A^{H} R_{w}^{-1} A)}{\lambda_{\max}(Q_{w})} \right) \leq f_{1} \left(\frac{L \sigma_{\alpha}^{2} \lambda_{\min}(A^{H} A)}{(L - (L - 1) \epsilon_{0}) (\sigma_{w}^{2} - (N - 1) N_{0})} \right)
$$

and equality holds when $Q_{w} = \epsilon_{0} I_{L} + (L - L \epsilon_{0}) u u^{H}$, for some norm-one $u \in \mathbb{C}^{L}$, and $R_{w} = N_{0} I_{N} + (\sigma_{w}^{2} - N N_{0}) v v^{H}$, where v is the norm-one eigenvector of $A A^{H}$ corresponding to its minimum eigenvalue. At this point $\lambda_{\min}(A^{H} A)$ is to be maximized over $\text{tr}(A^{H} A) \leq \epsilon$, and this problem has been solved in Section IV-B.

References

